

Soddisfare i requisiti operativi nel video di rete

Ottobre 2025

Sommario

Nella videosorveglianza, i requisiti operativi più comuni sono *rilevamento*, *osservazione*, *riconoscimento* e *identificazione* (indicati con la sigla "DORI") di persone od oggetti nel filmato.

Una volta stabilito il livello di dettaglio necessario, il modello di densità pixel offre le linee guida basilari per conoscere la risoluzione necessaria della telecamera. Il modello si basa sul numero di pixel necessario su un volto umano per l'identificazione; tuttavia, la densità pixel viene spesso indicata in pixel per metro o per piede.

Requisito operativo	Densità pixel necessaria		
Rilevamento	4 px/volto	25 px/m	8 px/piede
Osservazione	10 px/volto	63 px/m	20 px/ft (19 px/ft)*
Riconoscimento	20 px/volto	125 px/m	40 px/ft (38 px/ft)*
Identificazione	40 px/volto	250 px/m	80 px/ft (76 px/ft)*

^{*} Le conversioni più precise da px/m sono utilizzate nelle schede tecniche dei prodotti, ma nella pratica si tende a utilizzare valori arrotondati.

Il modello di densità pixel offre linee guida facili da utilizzare. In realtà, però, esistono sempre fattori supplementari, come la direzione della luce, la qualità dell'ottica e la compressione dell'immagine, che possono influire sul risultato. Axis fornisce vari strumenti online che utilizzano il modello di densità pixel per aiutare a progettare un sistema di sorveglianza che offra il livello di dettaglio desiderato nei punti giusti, tenendo conto sia della densità pixel che di molti altri fattori. Questi strumenti sono:

- **AXIS Site Designer** integra uno strumento di selezione delle telecamere che aiuta a sceglierle in base a diversi criteri, come le condizioni di illuminazione e il livello di dettaglio necessario a distanze prestabilite.
- Lens Calculator determina la copertura della telecamera e la densità pixel a distanze prestabilite per diverse combinazioni telecamera/obiettivo.
- Il **contatore di pixel** è uno strumento integrato sulle telecamere Axis che permette di convalidare facilmente i requisiti operativi. Si tratta di un semplice ausilio che visualizza una cornice con la larghezza e l'altezza misurate in pixel nella vista live della telecamera.
- Il plugin AXIS per Autodesk® Revit® consente di selezionare e posizionare i dispositivi interattivi Axis direttamente nel progetto Autodesk Revit e di integrare il sistema di sorveglianza nel progetto. Il plugin integra un selettore dispositivi, consentendo anche di verificare la copertura e regolare le impostazioni in modo che corrispondano alla scena.

I calcoli delle distanze relativi alle definizioni DORI sono riportati anche nelle schede tecniche dei nuovi prodotti Axis.

È opportuno notare che i requisiti operativi specificati sono validi in situazioni in cui le immagini riprese tramite sistemi video ottici sono interpretate da operatori umani. Per le applicazioni videoanalitiche o altri sistemi in cui l'analisi delle immagini viene eseguita tramite software, si applicano altre definizioni. Anche per le immagini termiche (acquisite tramite telecamere termiche) si utilizzano definizioni diverse per i requisiti operativi.

Occorre inoltre notare che, se si utilizza uno schermo esterno per monitorare la scena, la capacità di rilevare, osservare, riconoscere o identificare le persone dipende molto dalla risoluzione dello schermo.

Indice

1	Intro	oduzione	4		
2	Requisiti operativi				
3					
	tele	camera	5		
	3.1	Cos'è il modello di densità pixel?	5		
	3.2	Un modello semplificato di una realtà complessa	5		
4	4 Strumenti per la progettazione del sito		6		
	4.1	AXIS Site Designer	6		
	4.2	Lens Calculator	6		
	4.3	Contatore di pixel	7		
	4.4	Plugin AXIS per Autodesk® Revit®	7		

1 Introduzione

Nel progettare un sistema di sorveglianza, è importante tenere a mente lo scopo del sistema. Si possono utilizzare schede e specifiche tecniche per sapere quale telecamera ha la risoluzione migliore, ma per ottimizzare costi e risorse è bene pensare alla telecamera e alla configurazione che soddisfano i *requisiti* operativi. Ad esempio, occorre *identificare* le persone dalle immagini o solo *rilevare* se è presente qualcuno?

Questo documento tecnico spiega come selezionare una telecamera in grado di soddisfare i requisiti operativi del sistema. Dopo aver illustrato la densità pixel necessaria per ogni caso, presenta gli strumenti Axis che aiutano a progettare e configurare il sistema di sorveglianza.

2 Requisiti operativi

Lo standard distingue tra la necessità di *rilevamento*, *osservazione*, *riconoscimento* e *identificazione*. Talvolta, questi requisiti sono indicati con la sigla DORI.

Tabella 2.1 Requisiti operativi comuni nella videosorveglianza.

Requisito operativo	Livello di dettaglio	
Rilevamento	È possibile determinare se una persona è presente o meno.	
Osservazione	È possibile determinare quante persone sono presenti e vederne i dettagli caratteristici, come l'abbigliamento.	
Riconoscimento	È possibile determinare se una persona a video è identica a una persona vista in precedenza.	
Identificazione	È possibile identificare una persona.	

Le specifiche di questi requisiti (per le telecamere ottiche) si trovano nella normativa internazionale IEC 62676-4:2014 (Sistemi di videosorveglianza per applicazioni di sicurezza - Parte 4: linee quida applicative).

È opportuno notare che le specifiche sono valide in situazioni in cui le immagini riprese tramite sistemi video ottici sono interpretate da operatori umani. Per le applicazioni videoanalitiche o altri sistemi in cui l'analisi delle immagini viene eseguita tramite software, i requisiti operativi sono definiti diversamente. Anche per le immagini termiche (acquisite tramite telecamere termiche) si utilizzano specifiche diverse per i requisiti operativi.

Figura 2.1 Combinazione di tre foto della stessa persona per rappresentare tre requisiti operativi. La persona in primo piano è abbastanza vicina per l'identificazione. La persona al centro è riconoscibile, mentre quella più lontana è solo rilevabile.

3 Il modello di densità pixel: relazione tra i requisiti operativi e la risoluzione della telecamera

Dopo aver stabilito il livello di dettaglio necessario del sistema di sorveglianza, occorre trovare telecamere che soddisfino i requisiti. È qui che entra in gioco il modello di densità pixel, che associa il livello di dettaglio alla risoluzione della telecamera.

3.1 Cos'è il modello di densità pixel?

Il presupposto del modello è il numero di pixel necessario per rappresentare la larghezza di un volto (e i tratti distintivi identificativi) con il livello di dettaglio necessario. Per avere un requisito di densità pixel standardizzato, la densità pixel del volto può essere ricalcolata in base al numero corrispondente di pixel necessari per metro o per piede, ipotizzando che un volto medio abbia una larghezza di 16 cm o 6 5/16 pollici. La tabella elenca le densità pixel per i requisiti operativi delle varie categorie.

Tabella 3.1 Densità pixel per le varie esigenze operative.

Requisito operativo	Densità pixel necessaria		
Rilevamento	4 px/volto	25 px/m	8 px/piede
Osservazione	10 px/volto	63 px/m	20 px/ft (19 px/ft)*
Riconoscimento	20 px/volto	125 px/m	40 px/ft (38 px/ft)*
Identificazione	40 px/volto	250 px/m	80 px/ft (76 px/ft)*

^{*} La norma IEC 62676-4:2014 elenca i valori in px/m. Per i mercati che utilizzano come unità di misura i piedi invece dei metri, convertiamo i valori standardizzati in px/ft. Le schede tecniche dei prodotti Axis riportano valori convertiti con precisione (19, 38 e 76 px/ft) e li utilizzano per il calcolo delle distanze. In pratica, però, vengono spesso utilizzati valori più arrotondati (20, 40 e 80 px/ft).

In genere, come stabilito ad esempio dalla normativa IEC 62676-4:2014, si consiglia di avere almeno 40 pixel in larghezza sul volto per consentire l'identificazione. Se possibile, una densità pixel anche maggiore può essere vantaggiosa e offrire un margine di sicurezza per le condizioni più sfavorevoli, come un'illuminazione non ottimale e persone non rivolte direttamente verso la telecamera.

La densità pixel che è possibile ottenere in una specifica configurazione della telecamera dipende, tra i vari fattori, dalla distanza tra la telecamera e la persona o l'oggetto di interesse. Una persona più lontana dalla telecamera avrà una densità pixel inferiore rispetto a una persona più vicina.

3.2 Un modello semplificato di una realtà complessa

Va ricordato che il modello di densità pixel è un modello semplificato di una realtà complessa. Il modello può essere utilizzato per dare indicazioni, ma non vi sono garanzie che, pur rispettando questa regola semplificata, una telecamera riesca a soddisfare i requisiti operativi. Viceversa, anche se un sistema non è conforme alle linee guida sulla densità pixel, non è detto che non soddisfi i requisiti operativi. Nella realtà esistono sempre altri fattori, come la direzione della luce, la qualità dell'ottica e la compressione dell'immagine, che influiscono sul risultato. Axis offre diversi strumenti online per la progettazione di un sito di sorveglianza, tenendo conto sia della densità pixel che di molti altri fattori.

La scelta delle ottiche è particolarmente importante ed è una scienza a sé: per questo, è consigliabile lavorare con produttori di telecamere testate approfonditamente con l'obiettivo incluso.

Occorre inoltre notare che, se si utilizza uno schermo esterno per monitorare la scena, la capacità di rilevare, osservare, riconoscere o identificare le persone dipende molto dalla risoluzione dello schermo.

4 Strumenti per la progettazione del sito

Axis offre diversi strumenti che mettono in relazione la densità pixel e i requisiti operativi con le caratteristiche della scena e della telecamera. Questi strumenti possono aiutare a progettare un sito di sorveglianza completo rispettando i requisiti operativi.

I calcoli delle distanze relativi alle definizioni DORI sono riportati anche nelle schede tecniche dei nuovi prodotti Axis per i quali le caratteristiche DORI sono rilevanti. Questi calcoli usano il centro dell'immagine come punto di riferimento e valutano la distorsione dell'obiettivo.

4.1 AXIS Site Designer

AXIS Site Designer è uno strumento completo per la progettazione del sito. È disponibile online e aiuta a scegliere le telecamere, le soluzioni di registrazione e gli accessori necessari. Lo strumento di selezione delle telecamere aiuta a scegliere una telecamera adatta in base a vari criteri, come la densità pixel e il livello di dettaglio necessario a distanze prestabilite, per diverse condizioni di illuminazione.

In AXIS Site Designer, è possibile visualizzare le densità pixel ottenibili per ciascuna telecamera nell'intera area di copertura; ogni requisito operativo è visualizzato con una diversa tonalità di colore.

4.2 Lens Calculator

Lens Calculator è uno strumento online che determina la copertura della telecamera e la densità pixel a distanze prestabilite per diverse combinazioni telecamera/obiettivo.

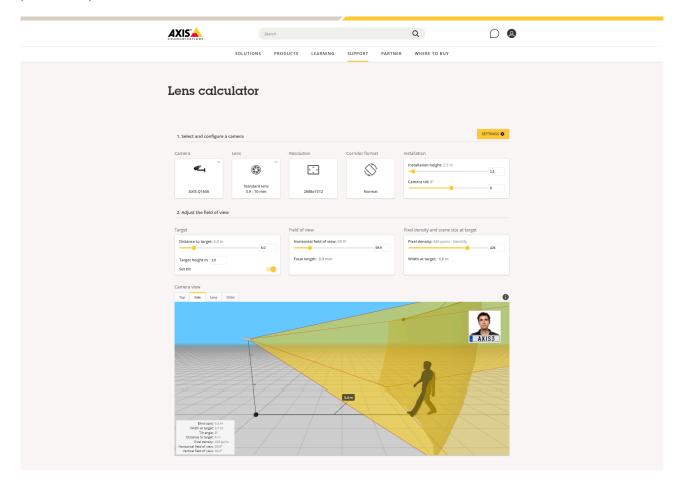


Figura 4.1 Uno screenshot di Lens Calculator.

4.3 Contatore di pixel

Il contatore di pixel è uno strumento integrato sulle telecamere Axis che consente di convalidare facilmente i requisiti operativi durante la configurazione della telecamera. Il contatore di pixel è un semplice ausilio visivo a forma di cornice. Può essere visualizzato nella vista live della telecamera con un contatore corrispondente per mostrare la larghezza e l'altezza della cornice (in pixel). Può essere regolato e spostato nell'immagine trascinandolo.

Figura 4.2 Una vista della telecamera con il contatore di pixel visibile. Lo strumento indica che la cornice misura 96 pixel in larghezza: l'identificazione, che richiede almeno 40 pixel in larghezza sul volto, è quindi possibile.

4.4 Plugin AXIS per Autodesk® Revit®

Il plugin AXIS per Autodesk Revit consente di inserire modelli 3D di telecamere Axis nel progetto di Autodesk Revit. I modelli rappresentano la copertura della telecamera (comprese le aree DORI), consentendo di verificarla con proprietà configurabili per soddisfare i requisiti di sorveglianza del progetto. La copertura del modello corrisponde alla copertura reale della telecamera e offre agli utenti una soluzione di progettazione affidabile in 3D.

Informazioni su Axis Communications

Axis permette di creare un mondo più intelligente e sicuro migliorando la sicurezza, la protezione, l'efficienza operativa e la business intelligence. In qualità di azienda leader nelle tecnologie di rete, Axis offre videosorveglianza, controllo accessi, intercom e soluzioni audio, che supporta con applicazioni analitiche intelligenti e una formazione di alta qualità.

Axis ha oltre 5000 dipendenti in più di 50 paesi e collabora con partner tecnologici e integratori di sistemi in tutto il mondo per fornire soluzioni ai clienti. Fondata nel 1984, Axis è una società con sede a Lund, in Svezia.

